Turn On The Lights – WIF Next Gen Power

Leave a comment

The Future of Power:

New  Sources

of Energy

Listen, fossil fuels have been great. They’ve provided such an abundance of cheap energy over the last century and change that we’ve ridden their wave from horses and muskets all the way to rocket ships and the internet. But there are costs to burning them (you know, like how you also burn the planet). As the cons begin to outweigh the pros, it’s abundantly clear the time of oil and coal is rapidly coming to an end.

The debate over which renewable sources could potentially replace them (and therefore deserve more public investment) has been raging for years now. But solar, wind, hydroelectric and nuclear (fission) are just the beginning. Turns out one thing we don’t have a shortage of is jaw dropping ideas for energy production that can, with the right resources and public investment, be implemented within our lifetimes. Things like…

8. Nuclear Waste

Nuclear fission reactors have been around forever, currently provide roughly 20% of America’s energy, and will likely be a central component to any climate response plan due to the low greenhouse damage they cause. Contrary to popular belief, they’re also quite safe, as accidents like the infamous Chernobyl and Fukushima disasters are preventable and rare. But there is one problem that isn’t being overblown, and that is the nuclear waste issue.

Current light-water technology surrounds uranium fuel rods with enough water to slow the neutrons and generate a sustainable fission reaction, but only an unacceptably inefficient 5% of the uranium atoms inside the rods can be used before they have to be replaced. The remaining 95% kind of just gets dumped into an ever-growing stockpile (90,000 tons and counting) that we don’t really know what to do with. This is where Fast Reactor technology comes in, which submerges the rods in sodium and can therefore switch those numbers: using 95% of the uranium and only dumping the remaining 5% rather than further contributing to the current mess. If we can muscle our way past the political stigma against nuclear power, this technology has real potential.

7. Nuclear Fusion

Of course, we don’t have to stick with fission at all. At least not long term. Nuclear fusion, in which molecules are combined into a new element using immense heat and pressure, is safer, overwhelmingly more powerful, clean and harmless to the environment, and could provide power in enough abundance to launch mankind into the kind of future only dreamed of on The JetsonsSadly, at this moment it’s not easy to sustain net positive (meaning we get more energy out of the reaction than we have to put in to trigger it) fusion reactions long enough to be commercially viable.

There’s an old adage commenting on the long, long road fusion has already traveled and how far it still has before we start rolling it out: “nuclear fusion is the power source of the future, and always will be.” It’s funny and a bit depressing, given the enormous potential that always seems to be just one breakthrough away. But we know fusion, the Holy Grail of clean energy research, works. We need only look up at the stars, which exist because of fusion. So technically, since none of us would exist without the sun, you do too. 

6. Geothermal Energy

As appealing as fusion and wind are, though, there’s certainly something to be said for an energy source that doesn’t depend on expensive reactor facilities or unreliable weather conditions. Enter geothermal energy: heat pulled straight from beneath the surface of the Earth, where there’s always plenty. Now technically, we’ve been harnessing geothermal energy for over a century by just collecting it from water and steam. But modern geothermal harnessing techniques are limited, both in range of use (even when the technology is mature, it’s mainly used for basic heating and cooling functions) and by geography itself (we have to harness the heat where it is, almost always in tectonically active areas).

However, we’re constantly improving at both getting to the heat and spending less money, effort and time doing it. And in the very near future, expect technologies falling under the umbrella of Enhanced Geothermal Systems, which drill and pour water into ‘hot dry rock’ areas in the earth’s crust in order to turn the currently inaccessible energy stores there into several times more usable, clean energy than fossil fuels currently give us access to, to reshape the energy landscape.

5. Space-Based Solar

The first thing anyone thinks of when they hear the term ‘renewable energy’ is probably solar. Why wouldn’t they? The sun is bombarding the earth with more raw power every second than we’ve ever managed to spend in a year. But the problem was never a lack of it; it’s always been harnessing and storing the stuff. Luckily, solar panels are getting cheaper and better at an alarming clip. But what if we could harness the sun’s energy in space? It’s always there, after all, in waves not filtered and diluted by the fickle atmosphere (which reflects 30% of it back into space anyway).

The basic idea would be to construct enormous solar farms which would collect the sun’s high-energy radiation and use mirrors to deposit the energy into smaller collectors, which would then send it to Earth in the form of microwaves or laser beams. As of right now, this technology is prohibitively expensive. But maybe it won’t be for long. After all, companies like SpaceX are constantly engineering ways to drive down the cost of sending cargo into space, so hopefully we’ll be running out of excuses not to build one of these world-changing (and charging) behemoths in our lifetime.

4. Solar Windows

But you know what? Cool as space solar is, we don’t actually have to go into space to revolutionize solar energy generation (which is already revolutionizing energy itself). Down here on the surface, solar panels are already covering rooftops throughout Europe and desert expanses in the American Southwest, not to mention steadily eating away into fossil fuel dominance. With upcoming quantum dot solar cell technology about to burst onto the scene, which essentially replaces standard silicon with artificial, solar-energy collecting molecules, expect the revolution not just to continue, but to accelerate. 

Before we continue, it’s worth noting that lots of cool but ultimately impractical solar-panel-as-something-else designs (where solar panels replace roads, walls, windows, etc) have been floated lately. The problem always comes down to the fact that solar panels just aren’t advanced enough to double in function. But quantum dot tech may change that. Imagine every window in the world filled with solar harnessing technology that you wouldn’t even be able to see with an electron microscope. So say goodbye to those unsightly panels, because without even looking different, your transparent windows might function as mini power stations in just a few short years.

3. Tidal Power

We already have hydroelectric power, generated by massive dams that use rushing river water to turn energy turbines. It’s powerful, clean stuff and certainly worth continuing to use. But it’s nothing compared to the untapped energy of the ocean’s currents, which, if properly harnessed, could power the planet several times over. Sadly, solar and wind cornered the renewable market early on, and as a result, tidal power is only just now getting reconsidered due to its enormous potential.

Oyster, for example, is essentially a giant hinged flap bolstered to the ocean floor, which swings back and forth with the current and pumps enough resulting energy to the surface to power thousands of homes. There’s also the Terminator turbine, designed by Air Force Academy engineers and inspired by aircraft, which ditches drag technology for wing-like lift, in order to (theoretically) harness an astonishing 99% of available tidal power (as opposed to the standard 50%). And the potential isn’t limited to raw energy generation, either. Perth, Australia just started using a tidal-powered desalination plant that can provide drinking water for more than half a million residents.

2. Hydrogen

Advantage number one: burning Hydrogen produces just about no pollution or greenhouse emissions at all, which is why NASA has been using the stuff to send rockets and shuttles into space for years. Sadly, it’s tough to expand this energy source to a global scale since hydrogen, the simplest and most abundant element in the universe (by orders of magnitude) isn’t available in large enough quantities where we can actually get it (unless it’s combined with other elements like Oxygen, as is the case with H2O).

But if we could figure this out, maybe by engineering a way to separate hydrogen from the elements of which it’s a part, we could change the world. Luckily, such hydrogen fuel cells, which may very well be the future of transportation, are already being built. Honda is actually planning to demonstrate the power and efficiency of this technology with a new Clarity Fuel Cell car by plugging the vehicle into a house which it will then power (as opposed to electric vehicles, which would draw power from the house). Like all new technology, of course, this will be expansive and unavailable to the public at large for some time. But the potential is real.

1. Biofuel

Like a lot of entries on this list, biofuel itself has been around for ages. Henry Ford actually envisioned his Model T car running on ethanol before cheap oil was found everywhere and captured the energy market instantly. Ethanol, the first generation of biofuel, is making a comeback too, but the fact that it can only be harnessed using the same land and resources as food is problematic (and driving up the cost of food). Generation 2’s switchgrass was floated as an alternative for a while, due to its hardiness and ability to grow like a weed virtually anywhere. But we’d need an amount of land equivalent to Russia and the US combined to grow it in large enough quantities to overtake fossil fuels as the primary power source for cars, so that won’t work.

But what about algae? Its natural oil content is over 50%, it’s not food, and doesn’t require fields or fresh water to grow. Instead, the remaining parts of the plant can be converted into gas and electricity and fertilizer to grow more algae in small labs. This one’s no brainer, folks.


Turn On The Lights

WIF Next Gen Power

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.