Quantum Physics Phun – WIF Science

Leave a comment

Implications of

Quantum Physics

Quantum Physics has given a lot of amazing things to humanity in the last few decades. From the technology with which you can track cheating spouses, to accurately scanning broken bones and muscles in the hospital, there are actually many practical applications of Quantum Physics. But if you believe the words of those nerdy scientists who are actually studying the discipline, many more revolutionary discoveries are yet to come (and that doesn’t just include more weird sci-fi movies).

 In the most basic of terms, Quantum Physics fundamentally studies the nature and rules of the tiniest known particles of the universe: those that actually make up the atoms and are broadly called sub-atomic particles. However, much of the discipline is still a mystery, even among the most experienced of Physicists, with many calling it a ‘weird science’.

10. Nuclear Fusion Power Plants

Nuclear fusion in the sun is actually the reason why life exists on earth (and also the reason why Mercury is basically just a lifeless roasted rock). The abundance of Hydrogen atoms in the sun, along with the heat and pressure ensures their constant fusion into Helium atoms, emitting radioactive energy in the process which comes to earth in the form of sunlight. Quantum Tunneling is among the fundamental processes with which fusion occurs in the form in the form of chain reactions.

Scientists and governments are currently trying to mimic this process on Earth, for which the services of Physicists and Engineers with advanced knowledge of Quantum Physics are being employed. Although the dream of powering the electricity grids with nuclear fusion remains a dream, scientists expect that new breakthroughs in the understanding of Quantum Mechanics will bring the dream closer.

9. Perfect Timekeeping

Whether it’s about syncing several space-stations and satellites circling the planet or getting a perfect time-reading from the Mariana trench or Mount Everest, Atomic Clocks, utilizing the principles of Quantum Mechanics are already making enormous contributions to humanity.

However, with the demand for greater accuracy increasing, more advanced Quantum Clocks are expected to be extremely crucial in helping to meet these goals. So, from ultra-precise self-driving cars to space travel, the principles of Quantum Mechanics will be extremely important in setting the pace for the future of humanity.

8. Extreme Computing

While computing technologies have come a long way in the last century, artificial intelligence is only just beginning to catch up the abilities of the human brain. Today’s Silicon-chips based computing technologies are soon expected to be insufficient in handling the demands of the future, where machines and humans are expected to be interconnected in a vast network that will be several times larger than today’s overall internet infrastructure. In this regard, Quantum Computing is currently being identified as the prime technology to replace the current one. The technology basically manipulates the natural properties of the atom to store and process data in real time.

In fact, experimental models of Quantum Computers have already yielded enthusiastic results, although scaling the same to economically feasible units have proven to be rather challenging. However, scientists expect that the technology could start dominating the global landscape by as soon as 2030. With the technology, data processing abilities are expected to make such great leaps that calculation that current take supercomputers over two years may be completed by Quantum Computers in a few seconds.

7. Intergalactic Travel

Humans are still a long way away from establishing habitable outposts on other planetary bodies. However, if you believe the words of well-known futurists (like Dr. Micho Kaku), our hopes of conquering the final frontier will depend a lot on our knowledge of Quantum Mechanics. While conventional technologies may not be able to deliver enough speed for humans to even colonize other planets in the Solar System, astronomers and space-travel enthusiasts frequently are very hopeful about the possibilities offered by Quantum Physics.

The spaceships of today already use Quantum Clocks, while the use of Quantum Computing is expected to bring humans even closer to perfecting future spaceships. Experts believe that the better understanding of Quantum Entanglement will ultimately be the key to perfecting intergalactic travel across wormholes.

6. Extremely Secure Cryptography

With hacking and online security identified as one of the most pressing concerns of this century, the demand for more secure cryptography is high. From banking transactions to personal messages, billions of exchanges of data every minute are supposed to be kept secure. But this has proven to be something that’s not very easy to achieve with existing technologies. It is here that Quantum Cryptography has been identified as the silver bullet against online security threats. Basically, the technology manipulates photons to store and share information on a subatomic level. In fact, the technology has already been successfully applied in several instances (like voting and satellite data).

Major technology companies are already spending their resources on Quantum Cryptography to scale it and make it more accessible for the technologies of the future.

5. Incredibly Detailed Optic Devices

Today, one of the most widespread application of Quantum Mechanics is happening in the field of optics. The most advanced microscopes in the world apply Quantum Tunneling in identifying the smallest objects like DNA and electrons. In fact, most of the modern microscopic innovations and discoveries owe their existence in some way to Quantum Mechanics.

In the future, the most accurate telescopes are expected to make use of advanced Quantum principles as well.

4. Tackling Diseases and Ailments in the Human Body

Over the years, the principles of Quantum Mechanics has played a major role in the development of modern Radiography machines and MRI scanners. In the near future, innovative technologies developed with the application of Quantum Mechanics are set to bring even more massive changes in healthcare.

Experts have identified nanotechnology and quantum computing technologies as the tools that will help deal with threats like cancers and organ failures more effectively in the future. Reliable researches have also pointed out that these technologies will also help the human body fight more effectively against diseases in the future.

3. Finding Evidence of Parallel Universes and the Multiverse

The concept of Parallel Universe has been one of the most fascinating subjects for fans of science-fiction. Indeed, the concept is still broadly considered to be a theory rather than fact. While physicists and astronomers in general are divided over the existence of parallel universes, many well-known scientists have stood behind the concept. On one occasion, Stephen Hawking theorized that black holes could in fact be portals to another universe.

Meanwhile, renowned scientist Brian Greene believes that the concepts laid by the String Theory can point out to the fact that Parallel Universes or Multiverses can indeed exist. Scientists like Hawking and Greene have pointed out that with a better understanding of Quantum Mechanics and with more advanced tools in the future, we may indeed discover sooner or later that the universe isn’t lonely after all.

2. Our Concept of Time and Space

If Einstein’s theory of relativity was already too complex for you, lately modern physicists have theorized ever more ‘outrageous’ concepts today which will undoubtedly confuse you even more. Firstly, in the definition of space, modern physicists are in the consensus that even the seemingly empty parts of the universe aren’t actually empty at all. These supposedly empty parts of the space are held by things the scientists and astronomers call ‘dark matter’ and ‘dark energy’. These two things together is estimated to make up around 95% of the entire universe.

On the other hand, modern physicists consider time to be something of an illusion. In fact, the very concepts of any event as a past, present or future occurrence is refuted, with the principle that reality is timeless. Moreover, the same scientists also entertain the idea that the linear concept of time is incompatible in quantum scale.

So basically, if we believe the words of quantum mechanics enthusiasts, what we thought was empty isn’t actually empty (i.e. space) and what we thought was an undisputed reality doesn’t actually exist (i.e. time). If this concept doesn’t shock you, then you probably don’t exist.

1. Consciousness Makes Reality

What if reality is the result of an accumulative consciousness? Or what if reality didn’t create you, but in fact, you created reality?

Of late, the term that incites the most vigorous debates in the world of Theoretical Physics is consciousness. While there is a basic consensus among Theoretical Physicists that the state of matter at the quantum level can differ to an extent depending upon the interpretation towards it, some scientists like Robert Lanza, Roger Penrose and Stuart Hameroff have gone a step further and theorized that consciousness actually defines how matter actually acts at the quantum level. Lanza, for instance, considers that time and space are mere tools that are applied by mind to interpret the information of the universe. Hameroff and Penrose have, on the other hand. theorized that consciousness is actually the consequence of quantum gravity effects in vibrating microtubules that are present in the neurons.

Hence, if you would want to believe academics proposing these notions, you are right now creating reality and living in it (like spiders creating their own webs to catch themselves in).


Quantum Physics Fun

WIF Science

Turn On The Lights – WIF Next Gen Power

Leave a comment

The Future of Power:

New  Sources

of Energy

Listen, fossil fuels have been great. They’ve provided such an abundance of cheap energy over the last century and change that we’ve ridden their wave from horses and muskets all the way to rocket ships and the internet. But there are costs to burning them (you know, like how you also burn the planet). As the cons begin to outweigh the pros, it’s abundantly clear the time of oil and coal is rapidly coming to an end.

The debate over which renewable sources could potentially replace them (and therefore deserve more public investment) has been raging for years now. But solar, wind, hydroelectric and nuclear (fission) are just the beginning. Turns out one thing we don’t have a shortage of is jaw dropping ideas for energy production that can, with the right resources and public investment, be implemented within our lifetimes. Things like…

8. Nuclear Waste

Nuclear fission reactors have been around forever, currently provide roughly 20% of America’s energy, and will likely be a central component to any climate response plan due to the low greenhouse damage they cause. Contrary to popular belief, they’re also quite safe, as accidents like the infamous Chernobyl and Fukushima disasters are preventable and rare. But there is one problem that isn’t being overblown, and that is the nuclear waste issue.

Current light-water technology surrounds uranium fuel rods with enough water to slow the neutrons and generate a sustainable fission reaction, but only an unacceptably inefficient 5% of the uranium atoms inside the rods can be used before they have to be replaced. The remaining 95% kind of just gets dumped into an ever-growing stockpile (90,000 tons and counting) that we don’t really know what to do with. This is where Fast Reactor technology comes in, which submerges the rods in sodium and can therefore switch those numbers: using 95% of the uranium and only dumping the remaining 5% rather than further contributing to the current mess. If we can muscle our way past the political stigma against nuclear power, this technology has real potential.

7. Nuclear Fusion

Of course, we don’t have to stick with fission at all. At least not long term. Nuclear fusion, in which molecules are combined into a new element using immense heat and pressure, is safer, overwhelmingly more powerful, clean and harmless to the environment, and could provide power in enough abundance to launch mankind into the kind of future only dreamed of on The JetsonsSadly, at this moment it’s not easy to sustain net positive (meaning we get more energy out of the reaction than we have to put in to trigger it) fusion reactions long enough to be commercially viable.

There’s an old adage commenting on the long, long road fusion has already traveled and how far it still has before we start rolling it out: “nuclear fusion is the power source of the future, and always will be.” It’s funny and a bit depressing, given the enormous potential that always seems to be just one breakthrough away. But we know fusion, the Holy Grail of clean energy research, works. We need only look up at the stars, which exist because of fusion. So technically, since none of us would exist without the sun, you do too. 

6. Geothermal Energy

As appealing as fusion and wind are, though, there’s certainly something to be said for an energy source that doesn’t depend on expensive reactor facilities or unreliable weather conditions. Enter geothermal energy: heat pulled straight from beneath the surface of the Earth, where there’s always plenty. Now technically, we’ve been harnessing geothermal energy for over a century by just collecting it from water and steam. But modern geothermal harnessing techniques are limited, both in range of use (even when the technology is mature, it’s mainly used for basic heating and cooling functions) and by geography itself (we have to harness the heat where it is, almost always in tectonically active areas).

However, we’re constantly improving at both getting to the heat and spending less money, effort and time doing it. And in the very near future, expect technologies falling under the umbrella of Enhanced Geothermal Systems, which drill and pour water into ‘hot dry rock’ areas in the earth’s crust in order to turn the currently inaccessible energy stores there into several times more usable, clean energy than fossil fuels currently give us access to, to reshape the energy landscape.

5. Space-Based Solar

The first thing anyone thinks of when they hear the term ‘renewable energy’ is probably solar. Why wouldn’t they? The sun is bombarding the earth with more raw power every second than we’ve ever managed to spend in a year. But the problem was never a lack of it; it’s always been harnessing and storing the stuff. Luckily, solar panels are getting cheaper and better at an alarming clip. But what if we could harness the sun’s energy in space? It’s always there, after all, in waves not filtered and diluted by the fickle atmosphere (which reflects 30% of it back into space anyway).

The basic idea would be to construct enormous solar farms which would collect the sun’s high-energy radiation and use mirrors to deposit the energy into smaller collectors, which would then send it to Earth in the form of microwaves or laser beams. As of right now, this technology is prohibitively expensive. But maybe it won’t be for long. After all, companies like SpaceX are constantly engineering ways to drive down the cost of sending cargo into space, so hopefully we’ll be running out of excuses not to build one of these world-changing (and charging) behemoths in our lifetime.

4. Solar Windows

But you know what? Cool as space solar is, we don’t actually have to go into space to revolutionize solar energy generation (which is already revolutionizing energy itself). Down here on the surface, solar panels are already covering rooftops throughout Europe and desert expanses in the American Southwest, not to mention steadily eating away into fossil fuel dominance. With upcoming quantum dot solar cell technology about to burst onto the scene, which essentially replaces standard silicon with artificial, solar-energy collecting molecules, expect the revolution not just to continue, but to accelerate. 

Before we continue, it’s worth noting that lots of cool but ultimately impractical solar-panel-as-something-else designs (where solar panels replace roads, walls, windows, etc) have been floated lately. The problem always comes down to the fact that solar panels just aren’t advanced enough to double in function. But quantum dot tech may change that. Imagine every window in the world filled with solar harnessing technology that you wouldn’t even be able to see with an electron microscope. So say goodbye to those unsightly panels, because without even looking different, your transparent windows might function as mini power stations in just a few short years.

3. Tidal Power

We already have hydroelectric power, generated by massive dams that use rushing river water to turn energy turbines. It’s powerful, clean stuff and certainly worth continuing to use. But it’s nothing compared to the untapped energy of the ocean’s currents, which, if properly harnessed, could power the planet several times over. Sadly, solar and wind cornered the renewable market early on, and as a result, tidal power is only just now getting reconsidered due to its enormous potential.

Oyster, for example, is essentially a giant hinged flap bolstered to the ocean floor, which swings back and forth with the current and pumps enough resulting energy to the surface to power thousands of homes. There’s also the Terminator turbine, designed by Air Force Academy engineers and inspired by aircraft, which ditches drag technology for wing-like lift, in order to (theoretically) harness an astonishing 99% of available tidal power (as opposed to the standard 50%). And the potential isn’t limited to raw energy generation, either. Perth, Australia just started using a tidal-powered desalination plant that can provide drinking water for more than half a million residents.

2. Hydrogen

Advantage number one: burning Hydrogen produces just about no pollution or greenhouse emissions at all, which is why NASA has been using the stuff to send rockets and shuttles into space for years. Sadly, it’s tough to expand this energy source to a global scale since hydrogen, the simplest and most abundant element in the universe (by orders of magnitude) isn’t available in large enough quantities where we can actually get it (unless it’s combined with other elements like Oxygen, as is the case with H2O).

But if we could figure this out, maybe by engineering a way to separate hydrogen from the elements of which it’s a part, we could change the world. Luckily, such hydrogen fuel cells, which may very well be the future of transportation, are already being built. Honda is actually planning to demonstrate the power and efficiency of this technology with a new Clarity Fuel Cell car by plugging the vehicle into a house which it will then power (as opposed to electric vehicles, which would draw power from the house). Like all new technology, of course, this will be expansive and unavailable to the public at large for some time. But the potential is real.

1. Biofuel

Like a lot of entries on this list, biofuel itself has been around for ages. Henry Ford actually envisioned his Model T car running on ethanol before cheap oil was found everywhere and captured the energy market instantly. Ethanol, the first generation of biofuel, is making a comeback too, but the fact that it can only be harnessed using the same land and resources as food is problematic (and driving up the cost of food). Generation 2’s switchgrass was floated as an alternative for a while, due to its hardiness and ability to grow like a weed virtually anywhere. But we’d need an amount of land equivalent to Russia and the US combined to grow it in large enough quantities to overtake fossil fuels as the primary power source for cars, so that won’t work.

But what about algae? Its natural oil content is over 50%, it’s not food, and doesn’t require fields or fresh water to grow. Instead, the remaining parts of the plant can be converted into gas and electricity and fertilizer to grow more algae in small labs. This one’s no brainer, folks.


Turn On The Lights

WIF Next Gen Power

Whiz Kids – Science Edition

2 Comments
WIF Production-001

Whiz Kids

10 Amazing Scientists (Who Happen to Be Teenagers)

More and more teenagers are making scientific breakthroughs. From cancer diagnostics and treatments to renewable energy and advancements in biodegradability, these teen researchers will make you ashamed of your science fair baking soda volcano.


10. Jack Andraka

teenscientists1

Jack Andraka created a biosensor for pancreatic cancer that he alleges is 168 times faster, 26,667 times less expensive and 400 times more sensitive than current diagnostic technology. He used carbon nanotubes, bound them to antibodies for the cancer biomarker mesothelin. and put all of this onto a strip of filter paper. This gave him a sensor that could detect pancreatic, ovarian and lung cancer. He was only 15.

His research made waves because of the abysmally low survival rate of pancreatic cancerand the innovative method he used. He secured a patent lawyer after winning the Grand Prize at the 2012 Intel International Science & Engineering Fair (ISEF), and started his own company, Andraka LLC, in December 2012. He’s the youngest person to have spoken in front of the Royal Society of Medicine, and he’s met the President.

9. Sara Volz

teenscientists2

Sara Volz performed experiments in which she selectively bred algae based on their oil output for the purpose of making them more commercially viable as biofuel. This research is especially relevant as the world continues to search for a way to lessen our dependence on fossil fuels. She won the top prize of $100,000 in the Intel Science Talent Search. Her dedication to the project is clear from the fact that, as she needed to check on the algae regularly, she kept them in a makeshift lab under her bed and slept on their light cycle.

8. Elana Simon

teenscientists3

Elana Simon was diagnosed with fibrolamellar hepatocellular carcinoma, a rare form of liver cancer, when she was twelve years old. Instead of letting it get her down, at the age of fifteen she worked with her surgeon and a friend to appeal for tumor samples from other patients, and performed a study on the genetics of this cancer.

Elana, her father and her surgeon worked in Rockefeller University and with the New York Genome Centre. They sequenced the genomes of the tumor samples, compared them to normal cells and other kinds of cancer, and found a mutation in the fibrolamellar samples. The end of one gene joined the back of the next, creating a protein called a chimera. Further research needs to be done, but Elana co-authored a paper in the prestigious journal Scienceon her work. She spoke to President Obama about her research at the 2014 White House Science Fair, received the Junior Champion Cancer Research Award from the American Association of Cancer Research and plans to study computer science at Harvard.

7. Daniel Burd

Burd

Daniel Burd is working on a solution to the problem of the slow decomposition of plastic bags. Plastic normally takes a long time to decompose (estimates vary, but go up to thousands of years), but this high school junior managed to do it in three months.

He reasoned that plastic does eventually degrade, so there must be a reason. That reason, he guessed, was bacteria. In a preliminary experiment, he buried plastic bags with dirt and yeast, and found that they did decompose faster. He then performed tests to isolate the bacteria responsible and found that these two strains were most effective for decomposing the polyethylene. 43% of the plastic had degraded within six weeks, an incredible record.

He thinks the rest would be gone in three months. His solution doesn’t pollute either; it onlyleaks water and trace amounts of carbon dioxide. He claims it’s industrially scalable and could easily be applied elsewhere.

6. Eesha Khare

teenscientists5

Eesha Khare built a super-capacitor that can charge an LED in twenty seconds. Her small device can last through 10,000 charge cycles, as opposed to the standard 1,000. It’s built using nano-structures, making it more environmentally friendly than normal batteries and allowing her devices to hold more energy per unit volume. The device can also fold and bend easily.

There has been much talk of using this technology in phone and car batteries, but this could still be quite far off because of the big difference in energy usage between phones and LEDs. However, charging an LED that fast remains a terrific advancement. She’s the 2013 runner-up in the Intel ISEF and won a $50,000 prize, while publications from Business Insider toTime have echoed the girl’s enthusiasm for the device’s practical applications.

5. Marc Roberge

teenscientists6

Marc Roberge discovered a way to neutralize anthrax in an envelope, and it’s deceptively simple — ironing. He destroyed the  bacteria by ironing the envelope for five minutes at a high temperature. Obviously, he couldn’t use real anthrax, but he got a substitute commonly used by scientists, bacillus subtilis. This substitute also happens to be more resistant to heat than anthrax, which adds strength to his findings. He says he got the idea from a conversation with his father, a medical toxicologist for the Center for Disease Control and Prevention.

His research was published in the Journal of Medical Toxicology in June 2006. Incidentally, ironing letters doesn’t blur ink or make them open up too early. The paper’s unashamedly punny title is ‘Bacillus spores in the mail: “Ironing” out the anthrax problem.’

4. Taylor Wilson

teenscientists7

Taylor Wilson was the youngest person on Earth to achieve nuclear fusion. His goal didn’t come out of nowhere; at eleven years old he was inspired by Shel Silverstein’s book The Radioactive Boy Scout, a novel in which a kid tries and fails to build a nuclear reactor.

Taylor thought he could do better. This, coupled with his passion for the radioactive elements of the Periodic Table, led him to conduct a “survey of everyday radioactive materials” for his school science fair. He procured a Geiger counter from a friend and went around on weekends looking for radioactivity. But this was small-scale stuff compared to what happened next.

Long story short, he wanted to build a small nuclear reactor. His family moved across the country and he enrolled in a school for profoundly gifted students. To make a working nuclear reactor, he’d need to focus 100,000 volts of energy to fuse atoms together, in a vacuum stronger than space. And he did it at the age of fourteen. He took his project to Intel ISEF and joined Eesha Khare on this list as a runner-up, this time in 2011. He also received a Thiel Fellowship, which gave him $100,000 to skip college and work on his own research.

3. Easton LaChappelle

teenscientists8

Easton LaChappelle built a functional prosthetic arm and hand that’s much cheaper than current models, thanks to his use of inexpensive 3D printing and open source technology. He had been working on a Lego arm for some time when he met a seven-year-old girl whose prosthetic arm had cost a staggering $80,000 and decided to work on the problem. His creation works better than a standard prosthesis, is stronger than a normal human arm and should retail for only $400.

LaChappelle’s worked in a NASA Robonaut team investigating how astronauts can controlspace robots from earth. He;s also won prizes at Intel ISEF but prefers to work away on his own. He hopes his device will be light enough and function well enough for everyday use by those in need of prosthetics.

2. Brittany Wenger

teenscientists9

Brittany Wenger developed a computer program for better diagnosis of breast cancer — her program detected 99% of malignant breast tumors. She had experimented with artificial intelligence and neural networks in the seventh grade after teaching herself to code, and when her cousin was diagnosed with breast cancer she put it into practice. She wanted to encourage the use of a less invasive diagnostic technique, namely fine needle aspirates. Doctors generally don’t use them because they’re so often inconclusive, and she set out to change that.

Her program identifies visual patterns associated with breast cancer and screens based on that. It also learns from its mistakes and continuously gets more accurate. She’s also developed a program to diagnose leukemia. Her breast cancer program is being tested intwo American hospitals, she won the Google Science Fair with the project, and yes, she met the President. She was also listed in Time’s 30 Under 30.

1. Shree Bose

teenscientists10

Shree studied the chemotherapy drug cisplatin, which works by damaging DNA until repair is impossible and the cells make themselves explode (sometimes science can be pretty hardcore). Unfortunately, cancer cells often develop a resistance to cisplatin, making the treatment useless. She investigated a protein called AMPK and its effects on cell resistance to cisplatin, and her research could help fight ovarian cancer by combating drug resistance andmaintaining cisplatin’s effectiveness as a chemotherapy drug.   Shree says that the enzyme might be playing a role in making cancer cells resistant. She won the overall prize in the 2011 Google Science Fair.

 

Whiz Kids – Science Edition